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Unconstrained and constrained minimization, localization, and the Grassmann manifold:
Theory and application to electronic structure
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An unconstrained minimization algorithm for electronic structure calculations using density functional for
systems with a gap is developed to solve for nonorthogonal Wannier-like orbitals in the spirit of E. B. Stechel,
A. R. Williams, and P. J. Feibelman@Phys. Rev. B49, 10 008~1994!#. The search for the occupied subspace is
a Grassmann conjugate gradient algorithm generalized from the algorithm of A. Edelman, T. A. Arias, and S.
T. Smith@SIAM J. Matrix Anal. Appl.20, 303~1998!#. The gradient takes into account the nonorthogonality of
a local atom-centered basis, Gaussian in our implementation. With a localization constraint on the Wannier-like
orbitals, well-constructed sparse matrix multiplies lead toO(N) scaling of the computationally intensive parts
of the algorithm. Using silicon carbide as a test system, the accuracy, convergence, and implementation of this
algorithm as a quantitative alternative to diagonalization are investigated. Results up to 1458 atoms on a single
processor are presented.
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I. INTRODUCTION

In the past decade, numerous minimization techniq
have appeared in the condensed matter literature that s
for the ground state in electronic structure calculations.1–9 A
common bottleneck in Hartree-Fock~HF!, density functional
theory ~DFT!, and tight-binding~TB! methods has been th
O(N3) scaling in the computational effort required to gen
ate the ground state solution, whereN is proportional to the
number of particles in the system. For systems with an
ergy gap, e.g., insulators, semiconductors, or molecu
minimization techniques offer methods to calculate
charge densities and total energies with computational e
that scales linearlyO(N) with the size of the system.

Minimization techniques achieve linear scaling by taki
advantage of well-known chemical intuition recently su
marized in the ‘‘near-sightedness’’ principle.19 Two sufficient
separated regions of a molecule, bulk system, surface,
should not interact strongly. Implicit in this principle is
localization condition: what is a range beyond which int
actions can be neglected? This is not a deterministic q
tion, but is a balance between accuracy and computati
efficiency. Smaller localization regions~see Sec. V! imply
longer range interactions are truncated, leading to redu
accuracy, but lead to computational savings as fewer ma
elements need be computed.O(N) minimization techniques
have mostly been implemented in TB methods, where
accuracy is not as great~see most HF and DFT formulations!
and thus smaller localization regions are more tolerable.
resulting matrices are sparser, leading to an earlier cross
point to the regime where linear scaling minimization tec
niques are more efficient, with acceptable accuracy, than
agonalization to obtain the electronic ground state.
0163-1829/2001/64~15!/155203~10!/$20.00 64 1552
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The basis sets of DFT and HF are larger and longer ra
than in TB, leading to Hamiltonian~or Fock! matrices that
are larger and much less sparse. The longer range, and
computationally demanding, interactions of HF and D
postpone the crossover point ofO(N) minimization com-
pared to diagonalization, limiting the benefits of linear sc
ing algorithms for finding the ground state solution. T
crossover point is achievable at smaller system sizes thro
tighter localization regions but only with a loss in accurac
Hence, whether it is advantageous to substitute a linear s
ing minimization for explicit diagonalization depends n
only on system size, but also on the degree of accuracy
sired in the solution. In this paper, we will examine the qu
tion of how desired accuracy affects the crossover poin
which the linear scaling algorithms become more efficie
than diagonalization in DFT calculations.

We present the implementation of a Grassmann conjug
gradient~GCG! minimization method into a Gaussian-bas
DFT code. We use nonorthogonal orbitals to span the oc
pied space, and discuss the technical issues related to
practical implementation of the minimization algorithm wi
localization. Using this implementation, we investigate t
natural length scales of localization regions. The tradeoff
tween accuracy and computational efficiency and scaling
havior is discussed in detail. The method is demonstrate
full basis calculations of SiC bulk systems containing up
as many as 1458 atoms and 18 954 basis functions.

Section II gives some mathematical background comp
ing and contrasting the usual eigenvalue problem with
minimization algorithms. Section III introduces the comm
geometric framework of the minimization techniques: t
Grassmann manifold.20,21 The aim of this section is to
present this recent mathematical insight in a concise, ac
©2001 The American Physical Society03-1
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sible manner and to add new perspectives that pertai
linear scaling. Comments on the density matrix formali
are inserted for additional insight and completeness. Sec
IV presents our minimization algorithm, which has applic
tion to any problem that requires the sum of any numbe
the lowest eigenvalues of a standard or generalized ei
value problem and the subspace spanned by the corresp
ing eigenvectors. Effort is especially made to ease conc
tual understanding while maintaining mathematical rig
The description of vector spaces is general and deals
possible nonorthogonality at every level. Section V rela
how localization of the physical system at different leve
translates into linear scaling of the minimization algorith
We also present information specific to the linear scal
implementation of the minimization algorithm. Section V
gives results and numerical analysis for our test system,
con carbide~SiC!. Our intent of this section is to evaluate th
ability of an implementation of the algorithm to obtain qua
titatively usable relative energies. We investigate this abi
by mapping out the accuracy of different localization regio
compared to diagonalization.

II. MATHEMATICAL BACKGROUND

The ground-state total energyET and charge densityn(r )
of a molecule or condensed matter are fundamental qua
ties of a system.22 Within an independent electron pictur
DFT is a common method to calculate these quantities. Th
are two main variational formulations for thes
calculations—density matrix12–19and orbital1–11 approaches.
Both give the same total energy and charge density but
tain them in slightly different ways. Concerning notatio
boldface will be used for vectors and matrices.

The standard orbital formulation for systems with a g
solves a generalized matrix eigenvalue problem

HC5SCE. ~1!

For a given representation~basis set ofM functions!, H is
the M3M Hamiltonian matrix.S is the overlap matrix, and
equalsI , the unit matrix, in an orthonormal basis.C is the
M3N matrix comprised of the expansion coefficients of t
M basis functions for theN lowest normalized eigenvector
of H. C diagonalizesH, creating the diagonalN3N matrix
E, and defines theoccupiedvector space. In general, th
eigenvectors are delocalized, makingC a dense matrix.

When calculatingET andn(r ) of systems with a gap, al
eigenvectors are weighted equally~two in a spin unpolarized
calculation! allowing only the calculation of the collectiv
properties of the eigenvectors. We define the band energ

EB52 Tr@E#. ~2!

We defineC(r ) to be the projection of theoccupiedspace
onto real space; therefore, if we approximate real space
mesh of 100 points,C(r ) would be a matrix of 1003N
yielding

n~r !5diagonal of 2@C~r !C†~r 8!#, thus r5r 8. ~3!
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ET is obtained fromEB and n(r ) by Eq. ~2.25! of Ref. 23.
SinceEB depends upon the contributionn(r ) makes toH,
ET is obtained only after a sufficient number of se
consistent cycles involving a diagonalization ofH at each
cycle.

This formulation alleviates the burden of orthogonaliz
tion of the wave functions. For transformationsCA5F,
with A being anyN3N nonsingular matrix,F spans the
same space asC. EB and n(r ) are invariant as long as th
equations are generalized to handle nonorthogonality
lack of explicit normalization. The essential information,EB
andn(r ), traditionally obtained by diagonalization, are no
obtained in a different manner that allows forO(N) scaling
for the solution of the ground state.

For the N lowest eigenfunctions, the matrix eigenvalu
problem is formally equivalent~i.e., F5C! to minimizing
the trace of a matrix Rayleigh quotient equation1,24

EB~F!52 Tr@~F†SF!21F†HF# ~4!

with respect toF, under the constraints thatF†SF5I , and
F†HF5E is a diagonal matrix.7,8 As all occupations are
equal; removing these constraints leavesEB unaltered as
long asF†SF is not a singular matrix.F is nonorthogonal,
and most importantly for our purposes, is made local~see
Sec. V!. The charge densityn(r ) is preserved using

n~r !5diagonal of 2@F~r !~F†SF!21F†~r 8!#, ~5!

thus makingET equal to the traditional method.25

Another alternative to the eigenvalue equation is the d
sity matrix formulation, which is similar to Eq.~4! also ob-
tains information only about the entire system and not in
vidual states. The band energy is minimized with respec
the density matrixP, a HermitianM3M matrix

EB~P!5Tr@PH#. ~6!

As P5F(F†SF)21F†, and from the relation Tr@AB#
5Tr@BA#, we can see that Eq.~4! and Eq.~6! are equivalent.
The matrixP is obtained directly without having to calculat
F. However the idempotent constraintPSP5P, automatic
when (F†SF)21 is calculated, must be enforced for th
ground state solution. This is usually done via~see Sec. III!
the McWeeny purification26

3PSP22PSPSP→P. ~7!

III. GEOMETRY OF THE VECTOR SPACE:
THE GRASSMANN MANIFOLD

The Grassmann manifold20,21 of rank N is the set of all
subspaces of rankN in some ambient ~primitive!
M-dimensional space. This manifold is comprised of
thogonal~or nonorthogonal, but linearly independent! wave
functions or idempotent density matrices. In the density m
trix representation, each HermitianM3M matrix P defines
the electronic occupation. Most matrices have occupa
magnitudes~eigenvalues ofP! that violate the requirement
of an electronic ground state. The occupation magnitu
3-2
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UNCONSTRAINED AND CONSTRAINED MINIMIZATION . . . PHYSICAL REVIEW B64 155203
must be 0 or 1 and thus create an idempotent surface,15 the
Grassmann manifold.

In the nonorthogonal orbital representation, we rearra
Eq. ~4! by defining

F̄†5~F†SF!21F†, ~8!

yielding

EB~F̄†,F!5Tr@F̄†HF# ~9!

as the functional to be minimized. We chooseF̄† as our
variable instead ofF̄ as only the transpose appears in o
equations. Equation~9! is cast in a dual basis1,27–29 form
where F̄† is the covariant matrix, one form30 or linear
form,31 of the matrixF. Biorthogonality, with orthogonality
as a special case, is automatically satisfied if the invers
calculated in Eq.~8!

F̄†SF5~F†SF!21F†SF5I . ~10!

The points in space are still defined by our occup
space, but the occupied space is now defined by (F̄†,F) and
is related toP through25

P5FF̄† ~11!

If F̄† andF are biorthogonal, thenP is idempotent; there-
fore, the point@P or (F̄†,F)# resides on the Grassman
manifold. Given a nonsingularN3N matrix A andF̄A

† , the

biorthogonal complement ofFA, (F̄†,F) and (F̄A
† ,FA)

through Eq.~11! create the sameP and thus define the sam
point on the Grassmann manifold.

An equivalent perspective defines each point byF and a
covariant metric of the occupied subspace creatingF̄† from
F. If the correct metric is used, the point lies on the Gra
mann manifold. It is in this spaceF and a metric, that we
minimizeEB(F), with respect toF, under the constraint tha
the minimum resides on the Grassmann manifold. The
son for introducing a constraint manifold into a previous
unconstrained problem is that, in an asymptotically line
scaling algorithm, the exact covariant metric of the occup
subspace (F†SF)21, is not calculated. Algorithms must ad
dress the possible departure and return to the manifold.

If a point P resides off of the Grassmann manifold, iter
tions of Eq. ~7! define a set of translations, a McWeen
path,15 resulting in idempotency. Using sparse multiplic
tions, this is anO(N) process enforcing idempotency aft
every update ofP. Alternatively the polynomial in Eq.~7!
replacesP in Eq. ~6! creating a new functional. In this
method, the minimization path ideally moves in close pro
imity to the Grassmann manifold with the minimum satisf
ing idempotency.

In the orbital formulation, adhering to the Grassma
manifold whenF†SF is not appreciably sparse~see Sec. V!
is straightforward. For these system sizes, it is most effic
to calculate the dense (F†SF)21. Eventually the asymptotic
O(N3) scaling of the dense inverse will dominate. Metho
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for satisfying the constraint with linear scaling effort are co
ceptually very similar to density matrix methods. Some
bital methods2–5 also create a new functional with an implic
penalty that keeps the minimization path close to the Gra
mann manifold. Other proposals use transformat
iterations21 on F or a direct calculation1 of an approximate
(F†SF)21 for remaining on the Grassmann manifold aft
each update ofF.

It is not plainly evident which method is superior. A non
orthogonal orbital method might be preferable over ortho
nal methods given that nonorthogonal orbitals are typica
more localized32,33 due to a prefactor.34 Algorithms that are
allowed to wander off of the Grassmann manifold ha
shown slower convergence rates than ones that enforce
thogonality at every step.35 This behavior was only studied
for dense linear algebra, but the properties should also a
to sparse linear algebra.

IV. GRASSMANN CONJUGATE GRADIENT ALGORITHM

Within the orbital formulation, a Grassmann conjuga
gradient algorithm20,21 is used to minimize Eq.~4!. Initially,
we introduce the algorithm without the complexity of loca
ization, i.e., no sparse matrices. The essential formulas in
algorithm appear in Ref. 21 with the exception of the para
translation of the gradient and the Polak-Ribie`re formulation
for creating conjugate directions.

A. Tangency

We need a gradientG5“FEB(F) to produce new con-
jugate search directions for minimizingEB(F). The gradient
must be in the direction of greatest change of the function
Even an infinitesimal movement in the direction of the g
dient must causeEB to change in value; therefore, the grad
ent must have the property that it has no component alonF
because such a direction would not change the value ofEB .
This is a property of the functional and does not depend u
the representation. For this to be true, the gradient must li
the tangent plane20 of F, a constraint given by

F†SG50. ~12!

Since one desires the opportunity to changeEB(F) for any
update, all search directions should also have this prope

B. Inner product

First, we must define an inner product. For an inner pr
uct ^"& and an infinitesimal steps in the direction of a d
placementdV in the tangent plane, the inner product of th
gradient with dV must equal the directional derivative i
dV, given by

^G"dV&5dEB5d/ds EB~F1sdV!us50 . ~13!

The only form that keeps the inner product invariant betwe
arbitrarily complete representations, for vectorsX1 and X2
defined forF at the origin, is

^X1"X2&5Real$Tr@~F†SF!21X1
†SX2#%. ~14!
3-3
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RACZKOWSKI, FONG, SCHULTZ, LIPPERT, AND STECHEL PHYSICAL REVIEW B64 155203
This gives^F"F&5N, formally the same constraint as no
malization.

C. Gradient, search direction, and line minimization

Note that the gradient of a functional should not be co
fused with its differential.21 The differential of the
functional35

dEB /dF52~ I2SFF̄†!HF~F†SF!21 ~15!

does not satisfy Eq.~12!. The gradient

G52~S212FF̄†!HF ~16!

does satisfy Eq.~12!. The differential, Eq.~15! lies on a cone
around the gradient. This can be graphically seen in Fig.
White et al.36 It may provide search directions that are su
able for minimization, but convergence will be degraded,
the gradient is not used. For efficiency, the differential m
be preferable if incorporatingS21 is too expensive. This may
be the case for finite elements37,38or Mehrstellen39 finite dif-
ference representations, where the dimension ofS is typi-
cally larger than for an atomic orbital basis.

The new search directionZI 11 is updated by the Polak
Ribière ~PR! formula20

ZI 115GI 11@^~GI 112GI !"GI 11&/^GI "GI&#ZI . ~17!

This formula gives slightly better convergence than
Fletcher-Reeves~FR! form. A step sizel in the search direc-
tion Z is chosen to minimize the functional in that directio
A quadratic approximation is used around the currentF for
the step size ofl in the directionZ.

EB~F1lZ!5EB~F!1lZ"dEB /dF11/2 lZ"H"lZ.
~18!

The second term is just the normal dot product ofZ with the
differential. The last term is the matrix elementH(Z,Z) of
the Grassmann Hessian. The general formula of the ma
element of the Grassmann Hessian, given two tangent
tors V1 andV2 , is33

H~V1 ,V2!52Tr@V̄1
†HV22V̄1

†SV2F̄†HF#. ~19!

The overall cost of the calculation ofH(Z,Z) is equivalent
to the calculation of the gradient because the expensive
culations ofHZ and SZ are already necessary for the ne
functional evaluation.

To getl, set

dEB~F1lZ!/dl50. ~20!

The step size is now easily evaluated by using Eq.~18!,
obtaining

l5~Z"dEB/dF!/H~Z,Z!, ~21!

andF is updated according to

Fnew5F2lZ. ~22!
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D. Parallel transport

For the search direction to be tangent toF, the currentZ
must be orthogonal toFnew, so that when Eq.~17! is used in
the I 11GCG iteration,ZI 11 will be orthogonal toFnew. In
this manner, Hessian information is properly communica
from one iteration to the next. This is accomplished to
orders by a parallel transport ofZ corresponding to the up
date inF. GI is also translated. In Eq.~17!, ZI

new andGI
new

replaceZI andGI respectively.

ZI
new5ZI1lFZ̄I

†SZI ~23!

GI
new5GI1lFZ̄I

†SGI . ~24!

E. Termination and convergence

The algorithm can be terminated when the change
EB(F) or the norm of the gradient
Re$Tr@(F†SF)21G†SG#%, becomes smaller than a pre
scribed threshold. We adopt the latter. Once the thresho
achieved or when a maximum number of iterations
reached, we update the Coulomb and the exchan
correlation potential using the charge density created fr
F. For dense matrices, a threshold of 10210 and a maximum
iteration number of 15 was sufficient to obtain results with
a few mRy of diagonalization.

This orbital minimization method has utility in any eigen
value problem that extensively uses iterative solvers. In e
tronic structure, this comprises representations havin
much larger number of basis functions than occupied sta
e.g., plane waves,7,10,11 finite difference,39–41 and finite
elements.37,38

V. SPARSE IMPLEMENTATION OF THE MINIMIZATION
ALGORITHM

We use a pseudopotential Gaussian-based atomic or
method implemented in the serial codeSEQQUEST as the
framework to implement the Grassmann conjugate grad
~GCG! minimization algorithm.42 Each basis function is a
single Gaussiane2at2

or a contracted Gaussian~a linear
combination of Gaussians! multiplied by a spherical har-
monic (YL

m) for the angular dependence. We will refer to
shell as the set of basis functions with the same radial Ga
ian term andL value for the spherical harmonic but differin
by the m value. We use a split-valence double zeta w
polarization~DZP! basis set.

The inner shells~L50,1 for silicon! are comprised of
contracted Gaussians with four Gaussians that are sh
ranged and thus give variational flexibility near the ato
The outer shells~L50,1 for silicon! have a single Gaussia
with a smallera making it longer ranged. The polarizatio
shell describes the lowestL value of an unoccupied atomi
shell ~L52 for silicon!. The localized nonorthogonal orbit
als, which define the occupied space, are linear combinat
of contracted Gaussians and are referred to as orbitals.
basis set is optimized for accuracy without explicit consid
ation of sparsity inH andS.43
3-4
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A. Sparsity

The implementation of linear scaling requires using a
sis set whose elements are strictly localized in real sp
e.g., finite elements37,38 or a tight-binding basis,2,6 or
pseudolocalized in real space, e.g., Gaussians made loc
the use of cutoffs. Using a local basis,H and S become
sparse once a ‘‘sufficient’’ separation distance between b
functions is reached. The specifics of theO(N) evaluation of
H have been discussed elsewhere42,44–48and will not be re-
peated here.

Sparse storage ofM3M matricesH, and S is easily
adapted from the linear scaling dense creation scheme.42 The
cutoff values that determine if elements are non-negligi
give errors in the total energy less than 1mRy/atom. The
sparsity pattern, a list of the positions of non-negligible e
ments, ofS is used for the storage of surviving elements ofH
and those needed fromP. A benefit of this method is that we
only require the elements ofP ~used in the calculation of the
total energy and charge density! that correspond to the non
zero elementsS. The M3N matricesF, Z, and G, have
strict distance cutoffs input by the user. Only shells with
the localization sphere, measured from the center of an
bital ~atom-centered or bond-centered! contribute to that or-
bital. Since each shell has a different spatial extent, ev
localized orbital has a separate localization radius for e
shell of every type of atom.

The sparsity pattern of theM3N matrices of the typeSF
can be determined two ways. The first method is by use
cutoffs as forF. In the second method, an element is kep
its value is above an input threshold value. In the res
presented in Sec. VI, the sparsity pattern was calculated
held fixed for each SCF cycle. Since the initial estimate oF
was not sufficient using the second method, the initial S
cycle used the first method and subsequent cycles used
second method.

A feature of the orbital formulation is that whileF be-
comes sparse and local we still have the information c
tained within an extendedP ~i.e., our method has the bene
that our localF has the same information as an extendedP
of which we only require a local piece!. This is the result of
the extended nature of the biorthogonal complementF̄†

~which is never explicitly stored!. The ability to separate the
localization lengths’ scales~via localized nonorthogonal or
bitals! while maintaining a less localized even delocaliz
density matrixP, is not possible with either localized o
thogonal orbitals or a density matrix formulation.

F†SF andF†HF become sparse next and can be qu
dense due to the interaction of the occupied orbitals medi
by H and S. Since sparsity occurs at different stages it
advantageous for the algorithm to exploit this property. If t
matrices are sparse, the matrix multiplications can be car
out in O(N) steps by computing only those elements that
nonzero. A matrix needs to be significantly sparse, ab
10% of elements being nonzero, before sparse routines
come faster than machine-dependent optimized dense
tines. For the system sizes studied, the sparsity ofF†SF and
F†HF did not warrant sparse multiplications, and thus we
kept dense. A similar observation was noted in Ref. 9.
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In our implementation of the sparse matrix multiplic
tions, we foundBLAS routines to be very beneficial. We use
multiplication list for theSF multiplication that holds infor-
mation necessary to access viaBLAS1 contiguous blocks of
data for the multiplication of a shell-blocked row and th
orbitals in a localization region. We then useBLAS3 routines
for the multiplication of these dense submatrices. The ot
multiplications are done a similar manner.

B. Action of SÀ1

With localization, the definition of the gradient, Eq.~16!,
changes. If the fullS21 is calculated, then the result of Eq
~16! is truncated in order forG to lie in the same space asF.
This method includes geometric coupling from basis fun
tions outside of the localization region and thus corrupts
gradient by incorporating this information which is incons
tent with the localization. This straightforward approach
unnecessarily expensive, anO(N3) process, and performe
poorly compared to the following approach in empirical te
we ran.

With no localization,S21 accounts for the curvature o
the entire primitive space~basis set! in order to align the
differential in the direction of greatest increase. With loc
ization, the orbitals are restricted to lie in a certain subsp
of the primitive space. An orbital is no longer affected b
curvature of the entire primitive space but only by the geo
etry of the vector space in its localization region. Therefo
only a square submatrix ofS, and consequentlyS21, is as-
sociated with an orbital. This submatrix ofS is inverted in
order to obtain the localized gradient for a given orbital. T
action ofS21 becomes a matrix multiply of a column ofF,
a single localized orbital, by its corresponding overlap
verse. This computation scales linearly.

C. Problems with convergence

With our implementation of the GCG algorithm includin
the effects of localization, the norm of the gradient no long
converges to zero. We do not know if this effect is a natu
consequence of localization or our lack of fully understan
ing the geometry of the new vector space of localized or
als. However, as long as the convergence is consistent an
a small enough value, the algorithm is reliable. The con
tency provides a cancellation of errors in the relative en
gies, and some suitably small value of absolute error ex
for any problem.

The norm of the gradient cannot be used as the stopp
criteria. The convergence is measured by

g5G"dEB /dF. ~25!

Without localization, this is exactly the norm of the gradie
Also arising from localization, the step size,l, can give

an increase in the energy. This occurs more often with sm
localization regions. A version of Brent’s algorithm49 has
been implemented to ensure a decrease inEB . For small
localization regions, sometimes a decrease inEB cannot be
found in the search direction. The basis functions neces
for a decrease have been made inaccessible due to loca
3-5
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tion. The GCG algorithm is restarted as an attempt to alle
ate this problem. Sometimes a decrease cannot be fo
even when the gradient is used. The algorithm is then ter
nated.

VI. RESULTS FOR SILICON CARBIDE

We test the accuracy of the GCG algorithm to reso
relative energies between different systems with different
calization regions. SiC, a wide gap semiconductor that
be operated at high temperature and high pressure, was
sen for its technological importance50 and for its multiple
crystal phases, providing a good test suite for the accurac
the total energy calculations. Relative energy differences
tween the 3C~cubic! and the 2H and 4H~hcp! phases51 are
used for this purpose.

As a check of the basis set, Table I compares our c
verged calculations using diagonalization within the lo
density approximation~LDA ! to structural values from
experiment,52 and recent relative energy calculations usi
plane waves51,52 ~LDA ! and LMTO ~Ref. 53! ~GGA!. We
relaxed the internal positions for the hcp phases. Our lat
constants lie within 1% of experiment as do one of the pla
wave and the presented LMTO results~nonpresented result
were stated to lie within 1%!. All c/a ratios of the hcp phase
are in good agreement with experiment. We obtain the pro
energetic ordering of the phases, with differences on the
der of 0.1 mRy/atom.

For the two-atom 3C phase, we use up to a 12312312
Monkhorst-Pack54 mesh. For the four-atom 2H and eigh
atom 4H we used up to a 9314314 and a 3310310 mesh,
respectively. We include theG point, k50, for the k-point

TABLE I. Structural and energetic results with diagonalizati
respectively compared to experimental and theoretical values.

A ~Bohr! c/a
E2(4)H2Ec

~mRy/atom!

Cubic 4.095 Presentd

4.054 PW1c

4.091 LMTOb

4.118 PW2a

4.120 EXPTa

2H 5.781 1.642 0.251 39 Present
5.728 1.637 0.066 17 PW1

1.644 0.198 52 LMTO
5.805 1.641 PW2
5.813 1.641 EXPT

4H 5.785 3.275 20.034 25 Present
5.730 3.274 20.139 71 PW1

20.088 23 LMTO
5.800 PW2
5.807 3.271 EXPT

aReference 51.
bReference 52.
cReference 50.
dPresent work~LCAO!.
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sampling, to obtain~without explicit calculation! the total
energy for aG point sampling of the Brillouin zone of the
large supercells by using equivalentk-point sampling55 of the
primitive unit cells. Table II gives the energy/atom of th
different phases for different supercells.

Varying the localization region, we investigated the acc
racy, convergence, and scaling of computational effort w
system size forG point calculations of 64 to 1458 atoms. Th
initial occupied orbitals were formed fromsp3 hybridizing
the inner shells. The determination of the required accura
i.e., the energy differences to be resolved, and the co
sponding localization region is logically the first step in the
calculations. Generally, if the localization region is i
creased, higher accuracy is obtained. The localization u
also affects directly the convergence and computational
fort.

We start with the 64-atom system. Energies were cal
lated with the relaxed geometry from the convergedk-point
calculations.SF had full growth. Table III gives the energie
for the different phases for a given localization including t
diagonalization result for reference and the correspond
energy difference with the 2H phase. The localization
given in order as the cutoff radius for the inner, outer, a
polarization shells. Ab corresponds to an orbital whose lo
calization region is centered between two atoms anda is for
an atom-centered orbital. For example, a$5,4,5;b% setting
defines bond-centered orbitals with the localization radius
the inner and polarization shells longer than outer she
Four atom-centered orbitals on carbon were used for
larger localization region as the code takes advantage
shared sparsity patterns among orbitals to use less mem
and run faster. At a 7 Bohr radius cutoff, the code was mo
accurate and efficient for atom-centered orbitals than bo
centered orbitals.

After four SCF cycles, the diagonalization calculatio
were converged to within 0.1 mRy/atom. For an equita
comparison with diagonalization and varying localizatio
the energy values in Table III are given after four SCF cyc
and a maximum of 15 GCG iterations with a stopping cri
rion of g510210. We concentrate on the effects of the loca
ization radius for the inner and outer shells on the abso
and relative energies. From the bond-centered calculati

TABLE II. G point energies of supercells derived from equiv
lent k-point calculations involving the primitive unit cells

Ry/atom
No of atoms 3C 2H 4H

64 9.698 64 9.707 85 9.686 01
128 9.698 76 9.700 90 9.700 86
200 9.702 68 9.702 66
250 9.702 19
288 9.703 16 9.703 14
432 9.703 12
686 9.703 39

1024 9.703 48 9.703 26
1176 9.703 49
1458 9.703 52
3-6
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TABLE III. Energy in units of Ry/atom, for varying localization regions in the 64 atom SiC system

Energy/atom
3C DE(2H– 3C) 2H DE(2H– 4H) 4H

Diagonalization 9.698 64 0.009 20 9.707 85 0.021 83 9.686
$5,4,5;b% 9.690 65 0.010 83 9.701 49 0.023 28 9.678 2
$4,5,5;b% 9.678 91 0.011 92 9.690 84 0.024 17 9.666 6
$5,5,5;b% 9.692 08 0.011 71 9.703 78 0.024 09 9.679 6
$7,5,7;b% 9.693 43 0.012 00 9.705 43 0.023 59 9.681 8
$5,7,7;b% 9.693 64 0.011 33 9.705 27 0.023 36 9.681 9
$7,7,7;b% 9.694 18 0.011 65 9.705 83 0.023 08 9.682 7
$7,7,7;a% 9.697 06 0.009 83 9.706 90 0.023 06 9.683 8
$9,7,9;a% 9.697 97 0.009 32 9.707 29 0.022 37 9.684 9
$7,9,9;a% 9.697 95 0.009 26 9.707 21 0.022 16 9.685 0
$9,9,9;a% 9.698 24 0.009 17 9.707 41 0.022 00 9.685 4
$9,11,9;a% 9.698 38 0.009 18 9.707 56 0.022 01 9.685 5
$11,9,9;a% 9.698 31 0.009 21 9.707 52 0.021 98 9.685 5
$9,12,9;a% 9.698 60 0.009 05 9.707 65 0.021 90 9.685 7
$12,9,9;a% 9.698 43 0.009 11 9.707 56 0.021 95 9.685 6
$11,11,11;a% 9.698 43 0.009 21 9.707 65 0.022 03 9.685 6
$12,12,12;a% 9.698 63 0.009 14 9.707 77 0.021 88 9.685 8
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we find that near the center of the localized orbital, the in
shells have a larger impact on the accuracy of the total
relative energies than the more diffuse outer shells. The in
shells give more variational freedom where the orbital h
the highest probability and the strongest interactions,
near the center of the bond.

With the localization radius between 5 and 9 Bohr,
larger radius for the inner shells gave lower total energies
the 3C and 2H structures, but higher for 4H. In this range
larger radius for outer shells gave better accuracy for
energy differences. Above 9 Bohr, a larger outer-shell rad
gave lower total energies for all structures, but the relat
accuracy was mixed. Accuracy of the relative energies of
than 0.2 mRy/atom, which is on the order of the energy d
ferences for the converged results, was obtained for a ra
of 9 Bohr for each shell. The 9 Bohr radius corresponds
the extent of the orbitals of silicon determined by the cuto
already in SEQQUEST, which give an accuracy of 1mRy/
atom. A radius of 12 Bohr gave an accuracy of better th
0.1 mRy/atom~also obtained with a 9 bohr radius after 10
SCF cycles!. The SCF and GCG convergence with a larg
radius for the outer shell did generally better.

The convergence to the GCG algorithm impacts the e
ciency and accuracy of a calculation. As a measure of c
vergence for the GCG algorithm, we plot, in Fig. 1, the a
solute value ofg for the $5,4,5;b% setting of the 64-atom
system for the first SCF cycle. Figure 1 shows three dist
stages for the convergence of the GCG algorithm:~1! starts
with linear convergence typical of a conjugate gradient al
rithm, ~2! hits a region of flat convergence, and~3! then ends
with linear convergence. This behavior is exhibited for
sizes of localization regions and occurs similarly in sub
quent SCF cycles. The duration of each stage and the co
sponding transition points vary with localization radiu
Stage~3! is generally accompanied byg being negative at
15520
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some steps. In Fig. 1,g becomes and stays negative at ite
tion number 39. Note that for no localization, the GCG
gorithm converges linearly as in stage~1!.

Initially, the largest gradient values are for the shells n
the center of the localized orbital. This corresponds to
good initial convergence that results from the orbitals be
allowed to change in the direction~shells! of steepest de-
scent. As the gradient gets small, the size of the gradient
the shells within the localization region becomes compara
to the size for shells outside of the localization region. T
error in the gradient due to localization is now of the sa
order of magnitude as its length. Thus, the GCG converge
stalls, as orbitals are not allowed to move in directions n
essary for a significant decrease in the energy. Localiza
has effectively cut off the bottom of the bowl that makes t
minimum. Since the direction that would takeF to the bot-
tom is not available, the orbitals wander around the edge
this cut. At the end, the sharp drop is most likely due to
two vectorsG anddEB /dF becoming perpendicular.Z and

FIG. 1. G"dEB /dF vs iteration number for the$5,4,5;b% setting
for the 64 atom unit cell of SiC.
3-7



be
de
rg
de

se
c

pi
of
ia
rg
o
n

ls
il

tio
in
a
th
ffe
n

y
h
F
re
.

fo

t

ar

-

in
d

ce

vs
s
x
e

-
em

at-
n-
cts.

ling

e
ns.
d
te

int is

ng
g

e
nal-

RACZKOWSKI, FONG, SCHULTZ, LIPPERT, AND STECHEL PHYSICAL REVIEW B64 155203
dEB /dF also become perpendicular at this stage. This
havior can result in local minima being encountered, but
pending on the localization region the difference in ene
between the global and local minima may be within the
sired accuracy.

As convergence with localization differs from the den
case and since accuracy depends on the convergence,
vergence criteria require investigation. Because the stop
criterion ofg510210 is rarely met in a reasonable number
iterations, the maximum number of iterations is more cruc
Generally, 15 iterations achieve the same accuracy as la
number of iterations. In some cases better accuracy is
tained with more iterations, but it is probably more efficie
to use a larger localization region.

A suitable stopping criterion for SCF convergence a
depends on the localization. A larger localization region w
achieve SCF convergence comparable to diagonaliza
and a smaller localization may never achieve the stopp
criteria used for diagonalization calculations. Since less
curacy is expected from smaller localization regions,
SCF convergence can be stopped for a larger energy di
ence than for diagonalization and larger localization regio
For example, one can deem the$5,4,5;b% converged once the
energy change is less than 1 mRy/atom; higher accurac
not expected. This is achieved in 4 SCF cycles. T
$9,12,9;a% converges to within 0.1 mRy/atom after 4 SC
cycles. If the SCF takes too many cycles for the desi
convergence, then one needs a larger localization region

We now concentrate on the growth parameter,k. For the
250-atom cubic unit cell using the$5,4,5;b% setting, a sig-
nificant drop in total energy was seen abovek5531023.
For the accuracy expected of this system, growth cutoffs
the first SCF cycle were not crucial. For the$9,12,9;a% lo-
calization, we looked at several system sizes to determine
growth value necessary to keep the same accuracy and
proper energetic ordering of the crystal phases. For the l
est system we used,k51023 was sufficient. The growth for
the first SCF cycle was~12,15,12! using the naming conven
tion for the localization region. The results are presented
Table III. The accuracy for the$5,4,5;b% localization is pre-
sented in Tables IV and V. This localization did not obta
the proper energetic ordering at every supercell size but
succeed with the proper ordering for the largest super
done.

As a test of the scaling for the$5,4,5;b% setting, we
present in Fig. 2 the timing for 1 GCG step per orbital
number of atoms. In contrast, perfect linear scaling give
horizontal line. At smaller systems, linear scaling is not e
pected because the length scales are too small for the ‘‘n

TABLE IV. setting of $9,12,9;a% with the growth,k51023.

$9,12,9;a% Energy/atom

3C 2H 4H
128 9.698 50 9.700 53 9.700 48
200 9.702 22 9.702 18
250 9.701 77
288 9.702 69 9.702 63
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sightedness’’ principle to take effect. TheN3 scaling of the
inversion of the occupied spaceF†SF begins to be substan
tial around 1000 atoms. The timing for the 1458-atom syst
is smaller than expected. The impact of theN3 parts should
cause increasing deviation from a horizontal line. We
tribute this discrepancy to fluctuations in timing due to ru
ning on a nondedicated machine or possibly cache effe
For the 1458 atom system, 11.6% of the elements ofF†SF
are nonzero so at this point an asymptotically linear sca
minimization might become more efficient.

In Fig. 3, we show a plot of time~s! vs diagonalization
and optimization with two localization regions~$5,4,5;b%
and$9,12,9;a%!. This plot displays the large disparity in th
crossover point that occurs for different localization regio
For the $5,4,5;b% setting, the crossover point is obtaine
early ~less than 200 atoms!, but the results are less accura
than diagonalization. For the$9,12,9;a% setting, the results
are as accurate as diagonalization, but the crossover po
obtained much later~approximately 700 atoms!. These num-
bers are very important when deciding if a linear scali
algorithm is suitable for a certain problem. If one is lookin
at energy differences of;3 mRy/atom or only qualitative
effects, the$5,4,5;b% setting is sufficient. For very accurat
calculations for systems up to at least 700 atoms, diago
ization is required. The Lapack routineDSYGVX, which cal-

TABLE V. Setting of $5,4,5;a% with the growthk5531023.

$5,4,5;a% Energy/atom

3C 2H 4H
128 9.690 78 9.690 89 9.691 10
200 9.691 62 9.691 83
250 9.692 96
288 9.691 99 9.692 09
432 9.692 70
686 9.692 44

1024 9.693 49 9.691 59
1176 9.692 67
1458 9.692 77

FIG. 2. CPU time for one GCG step per orbital for the$5,4,5;b%
setting vs No. of atoms.
3-8
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culates a given number of lowest eigenvalues and eigen
tors, from the optimized libraryDXML was used. All of the
times are for a nondedicated serial 440 Mhz DEC works
tion. The user time from the functionETIME was used.

VII. SUMMARY

We have introduced a method that solves for the e
tronic ground state in terms of localized nonorthogonal
bitals implemented in the Gaussian-based density functio
code SEQQUEST. We have investigated the inherent leng
scales involved in the calculations and have tuned our a

FIG. 3. Timing for 4 SCF cycles for diagonalization@9,12,9-a#
and @5,4,5-b#.
.

,
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rithm to be as efficient as possible for systems in the rang
200–1500 atoms. We also have discussed the geometr
the involved vector spaces with reference to recent w
concerning the Grassmann manifold.

The orbital solutions can be restricted in space, a local
tion region, with significant savings in memory requiremen
and computational effort. In our results, we have focused
accuracy as being the motivating factor in determining h
and if the new minimization method code should be us
instead of explicit diagonalization. The accuracy of relati
energies of the cubic, 2H, and 4H phases of silicon carb
has been mapped out for different localization regions.
showed increasing levels of accuracy with increasing spa
extent of the localized orbitals. The crossover point with
agonalization for timings of the whole self-consistent cyc
ranges from 200 to roughly 700 atoms depending on
accuracy desired. This establishes the method to be a p
ising quantitative tool for approaches utilizing Gaussians a
other linear combination of atomic orbitals. Forces have b
implemented and work utilizing them will be presented in
future paper.
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